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How to make sure that
calibration models are
still working?

WARNING!

BORING CONTENT
AHEAD



» After big changes (e.g. lamp), instrument is run through normal
performance test including check on some 20 samples that are
not outliers and span the model space (ASTM D6122,1SO 12099)

* Every spectrum is assessed statistically (e.g. Q & T?) to be within
the model space. If ok, predict (ASTM D6122)

* Collect control samples e.g. daily that are also measured with
the reference method. Monitor the bias in control charts or

similar
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How to predict correctly?
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After 30 samples have been acquired, a proper statistical test is
used to prove that the calibration model performs according tg
specifications (ASTM D6708) WARNING!
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Calls for a correction. Identify whether
the problems is caused by
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e Samples

 C(Calibration model
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Correcting a calibration model




Calls for a correction. Identify whether
the problems is caused by

* Instrument

e Samples

e (Calibration model

1. Bias correction
2. Maybe slope as well but generally not
3. Severe slope calls for re-calibration

Correcting a calibration model
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Correcting a calibration model



Maintaining calibration Multivaniate
models is a significant task* Cahbrahon

* And often conveniently left out of the business
case. Even more so in ‘modern’ machine learning

contexts
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"At Novo Nordisk we are currently developing several
chemometrics models for near infrared applications.

After validation and implementation of the models it is
extremely important to minimize the need for model
maintenance. Because, in a highly regulated pharmaceutical
production that is working after Good Manufacturing Practice
(GMP) it is very costly to update a chemometric model.

Any new technologies, algorithms and methodologies that can
reduce the need for model maintenance, will benefit the
pharmaceutical industry greatly."

Erik Skibsted, Principal Scientist PhD

Novo Nordisk, Oral Protein Formulation, Team Real Time
Release Testing




"At Novo Nordisk we are currently developing several
chemometrics models for near infrared applications.

After validation and implementation of the models it is
extremely important to minimize the need for model
maintenance. Because, in a highly regulated pharmaceutical
production that is working after Good Manufacturing Practice
(GMP) it is very costly to update a chemometric model.

-

Any new technologies, algorith=== === =stbadalosios that oo

reduce the need for model PAT/QbD [httpS//brtly/BJNWS De

pharmaceutical industry greatly

BARRY M. WISE*, ROBERT T. ROGINSKI
*Comresponding author

Eigenvector Research, Inc.,
Wenatchee, WA 98801, USA

Erik Skibsted, Principal Scientist @

Novo Nordisk, Oral Protein
Release Testing

Model maintenance:
the unrecognized cost in PAT and QbD
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* Dairy receives biproducts from dairies worldwide

* Biproduct paid on composition — hence calibration
models used

* Each dairy/product have their own calibration model

* Expensive maintenance /
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PLS model
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of dataset 2

Many companies are maintaining tens, hundreds

and even thousands of calibration models \,.._.




The problem — US






Merge all models into one. Is that optimal?

Traditional solution
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e Bad idea to fuse into one
global model
* Three models are fine



 Bad idea to fuse into one
global model

* Three models are fine

* Similar results when
grouping according to
protein level
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Two models for dry matter
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Matlab tool available

* We can automatically fuse models

 \We can select the balance between
models and performance

* Lower maintenance
* Increased robustness’
* Basically model clustering/fusion

So ... making life simpler and better



